Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Wellcome Open Res ; 8: 22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864926

RESUMEN

We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website.

2.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916164

RESUMEN

The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Niño , Humanos , Plasmodium falciparum/fisiología , Malaria/parasitología , Reproducción , Adaptación Fisiológica , Malaria Falciparum/parasitología
3.
Wellcome Open Res ; 6: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824913

RESUMEN

MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.

4.
Front Immunol ; 10: 2328, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681266

RESUMEN

In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Variación Antigénica , Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Lactante , Recién Nacido , Kenia , Masculino
5.
PLoS Pathog ; 15(7): e1007870, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31260501

RESUMEN

Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Anticuerpos Antiprotozoarios/sangre , Variación Antigénica , Antígenos de Protozoos/genética , Preescolar , Epítopos/genética , Epítopos/inmunología , Membrana Eritrocítica/inmunología , Membrana Eritrocítica/parasitología , Femenino , Humanos , Lactante , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia
6.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30135713

RESUMEN

Human malaria is a complex disease that can show a wide array of clinical outcomes, from asymptomatic carriage and chronic infection to acute disease presenting various life-threatening pathologies. The specific outcome of an infection is believed to be determined by a multifactorial interplay between the host and the parasite but with a general trend toward disease attenuation with increasing prior exposure. Therefore, the main burden of malaria in a population can be understood as a function of transmission intensity, which itself is intricately linked to the prevalence of infected hosts and mosquito vectors, the distribution of infection outcomes, and the parasite population diversity. Predicting the long-term impact of malaria intervention measures therefore requires an in-depth understanding of how the parasite causes disease, how this relates to previous exposures, and how different infection pathologies contribute to parasite transmission. Here, we provide a brief overview of recent advances in the molecular epidemiology of clinical malaria and how these might prove to be influential in our fight against this important disease.


Asunto(s)
Malaria/epidemiología , Plasmodium/genética , Humanos , Malaria/etiología , Malaria/transmisión , Epidemiología Molecular , Plasmodium/fisiología
7.
Malar J ; 16(1): 450, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29115961

RESUMEN

BACKGROUND: During intra-erythrocytic replication Plasmodium falciparum escapes the human host immune system by switching expression of variant surface antigens (VSA). Piecemeal acquisition of variant specific antibody responses to these antigens as a result of exposure to multiple re-infections has been proposed to play a role in acquisition of naturally acquired immunity. METHODS: Immunofluorescence was used to explore the dynamics of anti-VSA IgG responses generated by children to (i) primary malaria episodes and (ii) recurrent P. falciparum infections. RESULTS: Consistent with previous studies on anti-VSA responses, sera from each child taken at the time of recovery from their respective primary infection tended to recognize their own secondary parasites poorly. Additionally, compared to patients with reinfections by parasites of new merozoite surface protein 2 (MSP2) genotypes, baseline sera sampled from patients with persistent infections (recrudescence) tended to have higher recognition of heterologous parasites. This is consistent with the prediction that anti-VSA IgG responses may play a role in promoting chronic asymptomatic infections. CONCLUSIONS: This pilot study validates the utility of recurrent natural malaria infections as a functional readout for examining the incremental acquisition of immunity to malaria.


Asunto(s)
Variación Antigénica , Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/fisiología , Antígenos de Superficie/inmunología , Preescolar , Eritrocitos/parasitología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lactante , Masculino , Proyectos Piloto
8.
Wellcome Open Res ; 2: 86, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062916

RESUMEN

PfEMP1 are variant parasite antigens that are inserted on the surface of Plasmodium falciparum infected erythrocytes (IE). Through interactions with various host molecules, PfEMP1 mediate IE sequestration in tissues and play a key role in the pathology of severe malaria. PfEMP1 is encoded by a diverse multi-gene family called var. Previous studies have shown that that expression of specific subsets of var genes are associated with low levels of host immunity and severe malaria. However, in most clinical studies to date, full-length var gene sequences were unavailable and various approaches have been used to make comparisons between var gene expression profiles in different parasite isolates using limited information. Several studies have relied on the classification of a 300 - 500 base-pair "DBLα tag" region in the DBLα domain located at the 5' end of most var genes. We assessed the relationship between various DBLα tag classification methods, and sequence features that are only fully assessable through full-length var gene sequences. We compared these different sequence features in full-length var gene from six fully sequenced laboratory isolates. These comparisons show that despite a long history of recombination,  DBLα sequence tag classification can provide functional information on important features of full-length var genes. Notably, a specific subset of DBLα tags previously defined as "group A-like" is associated with CIDRα1 domains proposed to bind to endothelial protein C receptor. This analysis helps to bring together different sources of data that have been used to assess var gene expression in clinical parasite isolates.

9.
BMC Infect Dis ; 17(1): 585, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835215

RESUMEN

BACKGROUND: The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. METHODS: Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants' antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. RESULTS: We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. CONCLUSIONS: This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. TRIAL REGISTRATION: Pan African Clinical Trial Registry: PACTR201211000433272 . Date of registration: 10th October 2012.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto , Animales , Anticuerpos Antiprotozoarios/genética , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Kenia , Estudios Longitudinales , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Nature ; 548(7669): 597-601, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28847005

RESUMEN

In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody diversification that can be selected in the immune response against pathogens and exploited for B cell engineering.


Asunto(s)
Anticuerpos Antiprotozoarios/química , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Donantes de Sangre , Malaria/inmunología , Mutagénesis Insercional , Plasmodium falciparum/inmunología , Receptores Inmunológicos/genética , Anticuerpos Antiprotozoarios/genética , Antígenos de Protozoos/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Europa (Continente) , Femenino , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Memoria Inmunológica , Intrones/genética , Malaria/epidemiología , Malaria/parasitología , Masculino , Plasmodium falciparum/metabolismo , Dominios Proteicos , Receptores Inmunológicos/química , Receptores Inmunológicos/inmunología , Moldes Genéticos , Exones VDJ/genética
11.
Cell Mol Life Sci ; 73(21): 4141-58, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27193441

RESUMEN

Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Animales , Proteínas Portadoras/metabolismo , Eritrocitos/ultraestructura , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/metabolismo , Parásitos/inmunología , Parásitos/ultraestructura , Fenotipo , Plasmodium falciparum/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo
12.
Infect Immun ; 84(5): 1331-1335, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26883585

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Eritrocitos/parasitología , Expresión Génica , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Preescolar , Estudios Transversales , Humanos , Lactante , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
13.
Parasitology ; 143(2): 171-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26741401

RESUMEN

The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.


Asunto(s)
Inmunidad Innata/inmunología , Vacunas contra la Malaria , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Humanos , Malaria Falciparum/prevención & control
14.
Sci Rep ; 6: 19882, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26804201

RESUMEN

Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var. Mutually-exclusive transcriptional switching between var genes allows parasites to escape host antibodies. This study examined in detail the patterns of expression of var in a well-characterized sample of parasites from Kenyan Children. Instead of observing clear inverse relationships between the expression of broad sub-classes of PfEMP1, we found that expression of different PfEMP1 groups vary relatively independently. Parasite adaptation to host antibodies also appears to involve a general reduction in detectable var gene expression. We suggest that parasites switch both between different PfEMP1 variants and between high and low expression states. Such a strategy could provide a means of avoiding immunological detection and promoting survival under high levels of host immunity.


Asunto(s)
Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/química , Anticuerpos/inmunología , Eritrocitos/química , Eritrocitos/inmunología , Eritrocitos/parasitología , Expresión Génica/inmunología , Interacciones Huésped-Parásitos/inmunología , Humanos , Kenia , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Propiedades de Superficie
15.
Sci Rep ; 5: 18034, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26657042

RESUMEN

Retinopathy provides a window into the underlying pathology of life-threatening malarial coma ("cerebral malaria"), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called "DC8" and "DC13" have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called "group A" was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology.


Asunto(s)
Antígenos de Protozoos/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Enfermedades de la Retina/parasitología , Encéfalo/parasitología , Preescolar , Eritrocitos/parasitología , Femenino , Humanos , Masculino
16.
Methods Mol Biol ; 1325: 115-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26450384

RESUMEN

The agglutination assay is used to determine the ability of antibodies to recognize parasite variant antigens on the surface of Plasmodium falciparum-infected erythrocytes. In this technique, infected erythrocytes are selectively labelled with a DNA-binding fluorescent dye and mixed with antibodies of interest to allow antibody-surface antigen binding. Recognition of surface antigens by the antibodies can result in the formation of agglutinates containing multiple parasite-infected erythrocytes. These can be viewed and quantified using a fluorescence microscope.


Asunto(s)
Pruebas de Aglutinación/métodos , Antígenos de Protozoos/aislamiento & purificación , Membrana Eritrocítica/metabolismo , Malaria Falciparum/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Superficie/sangre , Antígenos de Superficie/aislamiento & purificación , Membrana Eritrocítica/parasitología , Citometría de Flujo , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/patogenicidad
17.
PLoS One ; 9(10): e108956, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25289635

RESUMEN

The level of plasma soluble ICAM-1 (sICAM-1) has been associated with the pathogenesis of several diseases. Previously, a commercial antibody was reported not to recognize an ICAM-1 allele known as ICAM-1kilifi prevalent among African populations. However, that study was based on 19 samples from African Americans of whom 13 had the wild type allele, five heterozygotes and one homozygote. Here, we compare plasma sICAM-1 measures using three different commercial antibodies in samples from Kenyan children genotyped for ICAM-1kilifi allele. We show that two of these antibodies have some degree of deficiency in detecting the ICAM-1kilifi allele. Consideration of the antibody used to measure sICAM-1 is important as up to 30% of the populations in Africa harbour this allele.


Asunto(s)
Población Negra , Molécula 1 de Adhesión Intercelular/sangre , Alelos , Población Negra/genética , Femenino , Genotipo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Kenia , Masculino , Polimorfismo Genético , Vigilancia de la Población
18.
BMC Infect Dis ; 14: 524, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25267261

RESUMEN

BACKGROUND: Host genotype accounts for a component of the variability in susceptibility to childhood Plasmodium falciparum malaria. However, despite numerous examples of host polymorphisms associated with tolerance or resistance to infection, direct evidence for an impact of host genetic polymorphisms on the in vivo parasite population is difficult to obtain. Parasite molecules whose expression is most likely to be associated with such adaptation are those that are directly involved in the host-parasite interaction. A prime candidate is the family of parasite var gene-encoded molecules on P. falciparum-infected erythrocytes, PfEMP1, which binds various host molecules and facilitates parasite sequestration in host tissues to avoid clearance by the spleen. METHODS: To assess the impact of host genotype on the infecting parasite population we used a published parasite var gene sequence dataset to compare var gene expression patterns between parasites from children with polymorphisms in molecules thought to interact with or modulate display of PfEMP1 on the infected erythrocyte surface: ABO blood group, haemoglobin S, alpha-thalassaemia, the T188G polymorphism of CD36 and the K29M polymorphism of ICAM1. RESULTS: Expression levels of 'group A-like' var genes, which encode a specific group of PfEMP1 variants previously associated with low host immunity and severe malaria, showed signs of elevation among children of blood group AB. No other host factor tested showed evidence for an association with var expression. CONCLUSIONS: Our preliminary findings suggest that host ABO blood group may have a measurable impact on the infecting parasite population. This needs to be verified in larger studies.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Niño , Preescolar , Eritrocitos/parasitología , Femenino , Expresión Génica , Frecuencia de los Genes , Genotipo , Interacciones Huésped-Parásitos , Humanos , Lactante , Kenia , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
19.
BMC Infect Dis ; 14: 170, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24674301

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) is a family of variant surface antigens (VSA) that mediate the adhesion of parasite infected erythrocytes to capillary endothelial cells within host tissues. Opinion is divided over the role of PfEMP1 in the widespread endothelial activation associated with severe malaria. In a previous study we found evidence for differential associations between defined VSA subsets and specific syndromes of severe malaria: group A-like PfEMP1 expression and the "rosetting" phenotype were associated with impaired consciousness and respiratory distress, respectively. This study explores the involvement of widespread endothelial activation in these associations. METHODS: We used plasma angiopoietin-2 as a marker of widespread endothelial activation. Using logistic regression analysis, we explored the relationships between plasma angiopoietin-2 levels, parasite VSA expression and the two syndromes of severe malaria, impaired consciousness and respiratory distress. RESULTS: Plasma angiopoietin-2 was associated with both syndromes. The rosetting phenotype did not show an independent association with respiratory distress when adjusted for angiopoietin-2, consistent with a single pathogenic mechanism involving widespread endothelial activation. In contrast, group A-like PfEMP1 expression and angiopoietin-2 maintained independent associations with impaired consciousness when adjusted for each other. CONCLUSION: The results are consistent with multiple pathogenic mechanisms leading to severe malaria and heterogeneity in the pathophysiology of impaired consciousness. The observed association between group A-like PfEMP1 and impaired consciousness does not appear to involve widespread endothelial activation.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/biosíntesis , Angiopoyetina 2/sangre , Variación Antigénica , Niño , Endotelio/inmunología , Humanos , Kenia , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Parasitemia/sangre , Parasitemia/inmunología , Parasitemia/parasitología , Proteínas Protozoarias/sangre , Proteínas Protozoarias/inmunología , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/parasitología , Formación de Roseta
20.
Front Microbiol ; 5: 686, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566206

RESUMEN

BACKGROUND: Controlled human malaria infection (CHMI) studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD) and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI) to Plasmodium falciparum. METHODS: We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272). RESULTS: All participants developed blood-stage infection confirmed by quantitative polymerase chain reaction (qPCR). However one volunteer (110) remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR) (1.3) in comparison to the other 27 volunteers (median 11.1). A significant correlation was seen between PMR and screening anti-schizont Enzyme Linked Immunosorbent Assays (ELISA) OD (p = 0.044, R = -0.384) but not when volunteer 110 was excluded from the analysis (p = 0.112, R = -0.313). CONCLUSIONS: PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...